ОКП 42 1522

СОГЛАСОВАНО

ИОНОМЕР ЛАБОРАТОРНЫЙ И-160МИ

Формуляр ГРБА2.840.009 ФО

СОДЕРЖАНИЕ

1 ОБЩИЕ УКАЗАНИЯ3
2 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
3 КОМПЛЕКТНОСТЬ 8
4 ГРАДУИРОВКА ПРЕОБРАЗОВАТЕЛЯ9
5 МЕТОДИКА ПОВЕРКИ (КАЛИБРОВКИ)
6 ТРАНСПОРТИРОВАНИЕ
7 ПРАВИЛА ХРАНЕНИЯ15
8 КОНСЕРВАЦИЯ16
9 ДВИЖЕНИЕ ПРИБОРА ПРИ ЭКСПЛУАТАЦИИ16
10 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ17
11 СВЕДЕНИЯ О ПОВЕРКЕ (КАЛИБРОВКЕ)
12 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА
13 ПРОЧИЕ СВЕДЕНИЯ 19
ПРИЛОЖЕНИЕ А
ПРИЛОЖЕНИЕ Б Основные технические данные термодатчика20
ПРИЛОЖЕНИЕ В Номинальные статические характеристики преобразования ЭДС электродной системы для измерения одновалентных катионов
ПРИЛОЖЕНИЕ Г Номинальные статические характеристики преобразования ЭДС электродной системы для измерения двухвалентных анионов
ПРИЛОЖЕНИЕ Е Перечень некоторых методов анализа различных объектов, которые могут проводиться с помощью иономера И-160МИ

1 ОБЩИЕ УКАЗАНИЯ

Иономер лабораторный И-160МИ (далее - прибор), предназначен для измерения показателя активности ионов водорода (рН) и других одновалентных и двухвалентных анионов и катионов (рХ), а также массовой, молярной концентрации и массовой доли ионов (сХ) (далее - концентрация), окислительно-восстановительного потенциала (Еh), электродвижущей силы (ЭДС) электрохимических датчиков и температуры водных растворов. Прибор осуществляет индикацию результатов измерения на цифровом показывающем устройстве, а также преобразовывает измеренные величины в пропорциональные аналоговые и цифровые выходные сигналы.

Прибор может быть использован в лабораториях промышленных предприятий и научно-исследовательских учреждений и других областях хозяйственной деятельности (приложение E).

Прибор состоит из первичных измерительных преобразователей (далее - электродная система и термодатчик), вторичного измерительного преобразователя (далее - преобразователь) и комплекта принадлежностей для измерения.

Рабочие условия применения прибора соответствуют значениям для приборов группы 2 по ГОСТ 22261-94.

Прибор соответствует ТУ 4215-053-89650280-2009.

2 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

2.1 Метрологические характеристики

2.1.1 Диапазоны измерений прибора:

- в режиме pH от 0 до 14 (при применении электродов, входящих в комплект поставки от 0 до 12);
- в режимах pX, cX, mV находится внутри диапазона показаний преобразователя и определяется типом применяемого измерительного электрода и методикой проведения измерений:
 - в режиме показателя активности нитрат-ионов pX
 в режиме t
 от 0,3 до 4,3;
 от 0 °C до 100 °C.

Диапазоны измерений и цены наименьшего разряда цифрового отсчетного устройства (дискретности) преобразователя приведены в таблице 1.

Таблица 1

Измеряемая величина	Единицы измерения	Диапазон измерений	Дискретность
Показатель активности ионов (pX, pH)	-	от минус 20 до плюс 20	0,001
	мМоль/л,	от 100 до 1000 от 10 до 100	1 0,1
	мМоль экв./л	от 1 до 10	0,01
	мкМоль/л,	от 100 до 1000	1
	мкМоль экв./л	от 10 до 100 от 10 до 100	0,1 0,1
Концентрация ионов (сХ)	г/л, г/кг	от 1 до 10	0,01
NOHOB (CX)	мг/л, мг/кг	от 100 до 1000	1
		от 10 до 100	0,1
		от 1 до 10	0,01
	мкг/л, мкг/кг	от 100 до 1000 от 10 до 100 от 1 до 10	0,1 0,01
Окислительно- восстановительный потенциал (Eh), ЭДС электрохимических ячеек (режим mV)	мВ	от минус 3000 до плюс 3000	0,1
Температура (T)	°C	от минус 20 до плюс 150	0,1

2.1.2 Пределы допускаемых значений основной абсолютной погрешности преобразователя приведены в таблице 2.

Таблица 2

Измеряемая величина	Значение погрешности
Показатель активности одновалентных ионов	± 0,014
Показатель активности двухвалентных ионов	± 0,028
Окислительно-восстановительный потенциал (Eh), ЭДС электрохимических ячеек, мВ	± 0,7
Температура (T), °С	± 0,5

- **2.1.3** Пределы допускаемых значений основной абсолютной погрешности прибора в режиме измерения показателя активности ионов водорода (pH) при применении электродов, входящих в комплект поставки не превышают, pH ±0,03.
- **2.1.4** Пределы допускаемых значений основной абсолютной погрешности прибора в режиме измерения показателя активности нитрат-ионов (рХ) при применении электродов ЭЛИС-121 NO₃ и ЭСр-10103 не превышают, рХ ±0,05.
- **2.1.5** Пределы допускаемых значений основной абсолютной погрешности прибора в режиме измерения температуры не превышают, °C ±0,5.
- **2.1.6** Пределы допускаемых значений дополнительной абсолютной погрешности температурной компенсации прибора в режиме измерения показателя активности ионов водорода (рН) при применении электродов, входящих в комплект поставки, не превышают пределов основной абсолютной погрешности измерений прибора.
- **2.1.7** Пределы допускаемых значений дополнительных погрешностей преобразователя, обусловленных изменением внешних влияющих величин в пределах рабочей области применения, приведены в таблице 3.

Таблица 3

таолица о			
Влияющий фактор	Режимы измерений	Диапазон значений величин, влияющих на погрешность преобразователя	Пределы допускаемых значений дополнительных погрешностей (в долях предела основной абсолютной погрешности)
Сопротивление цепи из-			
мерительного электрода	pX (pH), Eh	от 0 до 1000 МОм	0,5 на каждые 500 МОм
(R _{изм})			
Сопротивление цепи			
	pX (pH), Eh	от 0 до 20 кОм	0,25 на каждые 10 кОм
(R _{BCП})			
Изменение напряжения	1 (1 /	(220 ± 22) B	0,5
питания сети на 10%	Eh, T	(220 ± 22) D	0,0
Температура окружающе-			
го воздуха (на каждые 10		от 10 °С	1,0
°C изменения температу-	Eh, T	до 35 °C	1,0
ры)			

- **2.1.8** Пределы допускаемых значений приведенной погрешности выходных напряжений преобразователя на аналоговых выходах «2 В» и «100 мВ» при нагрузках соответственно 4 кОм и 50 кОм соответствуют, % ± 0,25.
- **2.1.9** Изменение показаний преобразователя за 8 ч непрерывной работы не превышает 0,5 значений пределов допускаемой основной абсолютной погрешности преобразователя.

2.2 Основные параметры

- **2.2.1** Прибор сохраняет работоспособность в следующих рабочих условиях применения:
 - 1) температура окружающего воздуха от 10 °C до 35 °C;
 - 2) атмосферное давление от 84 до 106,7 кПа (от 630 до 800 мм рт. ст.);
 - 3) относительная влажность окружающего воздуха не более 80%;
- 4) рабочий диапазон температуры анализируемой среды определяется типом используемых электродов.
- **2.2.2** Пределы допускаемых значений основной абсолютной погрешности преобразователя по показаниям дисплея в режиме сХ для одновалентных ионов соответствует значению, рассчитанному по формуле (1)

$$\Delta_{\text{cX1}} = \pm 0.025 \cdot \text{cX} \tag{1}$$

Пределы допускаемых значений основной абсолютной погрешности преобразователя по показаниям дисплея в режиме сХ для двухвалентных ионов соответствует значению, рассчитанному по формуле (2)

$$\Delta_{cX2} = \pm 0.05 \cdot cX \tag{2}$$

В формулах (1) - (2)

 Δ_{cX} - пределы допускаемого значения основной абсолютной погрешности г/л, Моль/л;

сХ – измеряемое значение концентрации ионов г/л, Моль/л.

2.2.3 Концентрация ионов, в зависимости от выбранной размерности, рассчитывается по формулам (3) - (5).

$$cX = 10^{-pX}, (3)$$

где сХ - молярная концентрация, Моль/л;

$$cX = M \cdot 10^{-pX}, \tag{4}$$

где сХ - массовая концентрация, г/л;

М - молярная масса иона, г/Моль.

$$cX = 10^{-pX}/|n|, (5)$$

где сХ - молярная концентрация эквивалента, Моль экв./л;

n - валентность иона.

- **2.2.4** Преобразователь обеспечивает работу с электродными системами, имеющими следующие характеристики:
- 1) зависимость ЭДС электродной системы от измеряемого показателя активности ионов рХ при использовании режима термокомпенсации определяется по формуле (6).

$$E = E_i + S_t \cdot (pX - pX_i), \tag{6}$$

где Е - ЭДС электродной системы, мВ (измеряется преобразователем);

E_i, pX_i - координаты изопотенциальной точки измерительного электрода (приведены в эксплуатационной документации электродов).

S_t - значение крутизны измерительного электрода при данной температуре t °C, мВ/рХ; рассчитывается по формуле (7).

$$S_t = -0.1984 \cdot (273.16 + t) \cdot \frac{K_s}{n},$$
 (7)

где K_S - коэффициент, равный 0,8 ... 1,2, позволяющий учитывать отклонение крутизны электродной системы от теоретического значения, для которого $K_S = 1$;

t - температура анализируемого раствора, °C;

n - коэффициент, зависящий от вида и валентности иона:

одновалентные катионы, n = 1;

одновалентные анионы, n = -1;

двухвалентные катионы, n = 2;

двухвалентные анионы, n = -2.

Значения координат изопотенциальной точки в пределах:

E_i - от минус 3000 мВ до плюс 3000 мВ;

 pX_i - от минус 20 pX до плюс 20 pX.

2) зависимость ЭДС электродной системы от измеряемого показателя активности ионов рХ без применения термокомпенсации определяется по формуле (8).

$$E = E_0 + S \cdot pX. \tag{8}$$

где Е - ЭДС электродной системы, мВ (измеряется преобразователем):

 E_0 - значение ЭДС электродной системы в начальной точке диапазона измерения, мВ.

Преобразователи могут работать с измерительными электродами, значение Е₀ которых находится в пределах от минус 3000 мВ до 3000 мВ.

S - значение крутизны электродной системы, мВ/рХ.

Преобразователи могут работать с измерительными электродами, которые имеют значения крутизны S₂₀ (при температуре раствора 20 °C), приведенные в таблице 4.

Таблица 4

	Характеристики		Характеристики Одновалентные ионы		Двухвалентные ионы
		для анионов	от плюс 44 до плюс 82	от плюс 22 до плюс 41	
	S ₂₀ , мВ/рХ	для катионов	от минус 44 до минус 82	от минус 22 до минус 41	

- 3) электрическое сопротивление измерительного электрода от 0 до 1000 МОм;
- 4) электрическое сопротивление электрода сравнения от 0 до 20 кОм.
- **2.2.5** Преобразователь обеспечивает в режиме «Контроль» автоматическую диагностику параметров электродной системы (значений E_i , pX_i , K_S).
- **2.2.6** При градуировке в режиме измерения рН преобразователь обеспечивает автоматическую подсказку значений показателя активности пяти стандартных растворов по ГОСТ 8.134-2004.
- 2.2.7 Преобразователь в энергонезависимой памяти сохраняет настроечные константы электродных систем, предварительно введенные в любой из рабочих каналов.
- **2.2.8** Преобразователь работает совместно с ПЭВМ. Связь осуществляется через последовательный асинхронный интерфейс по стыку С2 в соответствии с ГОСТ 18145-81.
- **2.2.9** Выходные напряжения на аналоговых выходах преобразователя в режиме измерения Eh (при изменении входного напряжения от минус 2000 мВ до плюс 2000 мВ) и в режиме измерения pX (pH):
- от минус 2 В до плюс 2 В (для нагрузок с сопротивлением не менее 4 кОм) для выхода «2 В»;
- от минус 100 мВ до плюс 100 мВ (для нагрузок с сопротивлением не менее 50 кОм) для выхода «100 мВ».

Выходные сопротивления не более: 5 Ом - для выхода «2 В»;

200 Ом - для выхода «100 мВ».

- **2.2.10** Входное сопротивление преобразователя не менее 1•10 ¹² Ом.
- **2.2.11** Время установления показаний преобразователя t_{yct} , в секундах, не более значения, определяемого по формуле (9).

$$t_{ycT} = K \cdot (1 + R_{usm}), \tag{9}$$

- где R_{изм} значение сопротивления цепи измерительного электрода, ГОм; К - постоянный коэффициент, равный 5 с/ГОм.
- **2.2.12** Время установления рабочего режима преобразователя 30 мин. Допустимая продолжительность непрерывной работы не менее 8 ч. Время перерыва до повторного включения 30 мин.
- **2.2.13** Питание преобразователя осуществляется через блок сетевого питания (входит в комплект поставки) от сети однофазного переменного тока напряжением (220 ± 22) В, частотой $(50 \pm 1,0)$ Гц.
- **2.2.14** Мощность, потребляемая преобразователем, не превышает (при номинальном значении напряжения питания) 20 В•А.
 - **2.2.15** Габаритные размеры преобразователя, мм, не более (длина×ширина×высота) 200 × 170 × 50.

ГРБА2.840.009 ФО

2.2.16 Масса прибора, кг, не более

- 3.0
- в том числе измерительного преобразователя, кг, не более- 1,5.
- **2.2.17** Прибор относится к восстанавливаемым, ремонтируемым изделиям общего назначения.

Среднее время восстановления работоспособного состояния прибора - не более 1 ч.

- **2.2.18** Средняя наработка на отказ преобразователя не менее 12000 ч. Критерием отказа является несоответствие требованиям 2.1 настоящего формуляра.
 - 2.2.19 Полный средний срок службы преобразователя не менее 10 лет.
 - 2.3 Требования безопасности.

Прибор по требованиям безопасности соответствует ГОСТ Р 51350, по способу защиты от поражения током - классу II.

3 КОМПЛЕКТНОСТЬ

Комплект поставки прибора соответствует перечню, указанному в таблице 5.

Таблица 5

Наименование изделия	Обозначение изделия	Кол.	Примечание
Преобразователь	ГРБА2.206.015	1	
Электрод ЭСр-10103 K80.4*	ТУ 4215-020-89650280-2009		
Электрод ЭС-10603/7 K80.7*	ТУ 4215-012-89650280-2009		
Термодатчик ТДЛ-1000-06	ГРБА2.995.002-05	1	
Штатив универсальный ШУ-05	ГРБА4.110.001	1	Допускается ШУ-98
Блок питания		1	714B; 0,5A
Ключ электролитический	ГРБА5.129.001	1	Рисунок 5 РЭ. По-
Крышка	ГРБА8.057.017	1	ставляется по тре- бованию заказчика
Формуляр	ГРБА2.840.009 ФО	1	
Руководство по эксплуатации	ГРБА2.840.009 РЭ	1	
Кабель	ГРБА6.644.001-01	1	Приложение А. По-
Кабель	ГРБА6.644.037	1	ставляется по тре-
Кабель	ГРБА6.644.039	2	бованию заказчика
Кабель для подключения ПК	ГРБА6.644.045	1	Поставляется по
Программное обеспечение на диске CD	ГРБА3.060.001	1	требованию заказчика за отдельную оплату

^{*} Примечание. В стандартный комплект поставки входят электроды, указанные в строках 2 и 3 таблицы 5. Допускается по требованию заказчика поставлять взамен или дополнительно любые электроды типа ЭСр-1 и ЭС-1, комбинированные типа ЭСК-1, ионоселективные и редоксметрические электроды с отражением их наименований и количества в таблице. При этом стоимость комплекта прибора изменяется с учетом стоимости поставляемых электродов.

4 ГРАДУИРОВКА ПРЕОБРАЗОВАТЕЛЯ

- **4.1** Градуировка преобразователя производится после ремонта или длительного хранения при периодическом контроле основных эксплуатационно-технических характеристик, если обнаружится несоответствие нормируемым значениям, а также перед проведением поверки (калибровки).
- **4.2** Градуировка преобразователя производится на установке (приложение A). Для градуировки необходимы следующие приборы и устройства:
 - 1) компаратор напряжений, диапазон измерений от 0 до 3 В (например, Р3003);
 - 2) магазин сопротивлений класса 0,02 (например, МСР-60М);
 - 3) имитатор электродной системы (например, И-02).
- **4.3** Градуировка преобразователя в режиме измерения рН производится при номинальных значениях параметров электродной системы (приложение В) и автоматическом измерении температуры, согласно указаний руководства по эксплуатации.

Градуировку преобразователя в режиме измерения рН следует производить следующим образом:

- 1) установить на канале 1 вид измеряемых ионов «H+»;
- 2) нажать кнопку МЕНЮ, перейти на строку «ИЗОПОТЕНЦИАЛЬН. ТОЧКА» и ввести координаты изопотенциальной точки: pH_i = 7,000, E_i = -25,0 мВ;
- 3) установить на магазине сопротивлений сопротивление, соответствующее 20,0 °C (приложение Б);
 - 4) перейти в режим градуировки, подать от компаратора напряжение 382,15 мВ;
 - 5) ввести pH1 = 0.000;
 - 6) выбрать в открывшемся меню «ПРОДОЛЖИТЬ»;
 - 7) подать от компаратора напряжение минус 432,15 мВ;
 - 8) ввести pH2 = 14,000;
 - 9) выбрать в открывшемся меню «УТОЧНИТЬ ИЗОП. ТОЧКУ»;
- 10) установить на магазине сопротивлений сопротивление, соответствующее 100,0 °C, подать от компаратора напряжение минус 543,25 мВ;
 - 11) ввести pH2' = 14,000;
- 12) после перехода прибора в режим измерения, установить на магазине сопротивлений сопротивление, соответствующее минус 20,0 °C, подать от компаратора напряжение минус 376,60 мВ, на дисплее должны установиться показания рН «(14,000 \pm 0,020)».
- **4.4** Градуировка преобразователя в режиме измерения рХ производится при номинальных значениях параметров электродной системы (приложение Г) и ручной установке температуры, согласно указаний руководства по эксплуатации, в режиме градуировки электродной системы следующим образом:
 - 1) установить температуру раствора $Tp = 20.0 \, ^{\circ}C$;
- 2) установить на канале 2 вид измеряемых ионов «Х⁻⁻», войти в режим градуировки электродной системы;
 - 3) подать от компаратора напряжение минус 87,24 мВ;
 - 4) ввести pX1 = 0,000;
 - 5) подать от компаратора напряжение 319,90 мВ;
 - 6) ввести pX2 = 14.000:
- 7) перейти в режим измерения, подать от компаратора напряжение 116,33 мВ, на дисплее должны установиться показания «(7,000±0,040)».

5 МЕТОДИКА ПОВЕРКИ (КАЛИБРОВКИ)

Настоящая методика предназначена для поверки (калибровки) иономеров лабораторных типа И-160МИ.

ГРБА2.840.009 ФО

Межповерочный интервал прибора - 1 год. При экспорте приборов контроль метрологических характеристик производится в соответствии с правилами, действующими в стране - импортере.

5.1 Операции и средства поверки (калибровки)

При проведении поверки должны быть выполнены следующие операции и применены средства поверки с характеристиками, указанными в таблице 6.

Таблица 6

таолица о				
	Номер пункта	Наименование образцового СИ или вспомогательного средства поверки,		льность про- операции при:
Наименование опера- ции	НД по повер- ке	номер документа, регламентирующе- го технические требования, метроло- гические характеристики	первич- ной	периодиче- ской
Внешний осмотр	5.5.1	-	+	+
Опробование	5.5.2	-	+	+
Контроль основной абсолютной погрешно- сти прибора:	5.5.3	1 Рабочие эталоны рН ГОСТ 8.135- 2004 1,65, 4,01, 6,86, 9,18 при 25 °C. 2 Водяной термостат с диапазоном		
- в режиме измерения температуры	5.5.3.1	регулирования температуры от 0 °C до 100 °C, допускаемая погрешность	-	+
- в режиме измерения рН	5.5.3.2	установления температуры контролируемой среды – в пределах ± 0,2°C.	-	+
Определение погрешности измерений рН прибора, связанной с изменением температуры контролируемой среды (погрешность термокомпенсации)	5.5.4	3 Вода дистиллированная по ГОСТ 6709-72. 4 Посуда лабораторная стеклянная мерная по ГОСТ 1770-74. 5 Термометры ртутные ТЛ-4 ТУ25-2021.003-88, диапазоны измерений: от 0 °C до 50 °C, от 50 °C до 100 °C, цена деления 0,5 °C.	-	+
Контроль основной абсолютной погрешности преобразователя:	5.5.5			
- в режиме измерения окислительно- восстановительного потенциала (режим mV)	5.5.5.1	1 Компаратор напряжений Р3003 ТУ 25-04.3771-79, диапазон измерений от 0 до 11,11 В, класс точности 0,0005; 2 Имитатор электродной системы типа И-02 ТУ25-05.2141-76, $R_{\text{\tiny H}}=0$, (500, 1000) МОм, ПГ \pm 25 %, $R_{\text{\tiny B}}=0$, (10, 20) кОм, ПГ \pm 1 %.	+	-
- в режиме измерения температуры	5.5.5.2	1 Магазин сопротивлений Р4831 ГОСТ 23737-79, предел измерения 10 ⁴ Ом, класс точности 0,02.	+	-
Контроль дополнительных погрешностей преобразователя, вызванных изменением сопротивления	5.5.6	1 Компаратор напряжений Р3003 ТУ25-04.3771-79, диапазон измерений от 0 до 11,11 В, класс точности 0,0005;		
- в цепи измерительно- го электрода	5.5.6.1	2 Имитатор электродной системы типа И-02 ТУ25-05.2141-76, R _и = 0, (500, 1000) МОм, ПГ± 25 %,	+	-
- в цепи электрода сравнения	5.5.6.2	$R_B = 0$, (10, 20) KOM , $\Pi\Gamma \pm 1$ %.	+	-

Примечание - Допускается применять другие средства поверки (калибровки), не приведенные в таблице, обеспечивающие контроль метрологических характеристик приборов с требуемой точностью.

При получении отрицательного результата на любом из этапов, поверка (калибровка) прекращается.

5.2 Требования безопасности

При проведении поверки (калибровки) должны быть соблюдены требования безопасности, указанные в эксплуатационной документации приборов и средств поверки (калибровки).

5.3 Условия поверки (калибровки)

5.3.1 При проведении поверки (калибровки) должны соблюдаться следующие условия:

1)	температура окружающего воздуха, °С	20 ± 5;
2)	относительная влажность, %	от 30 до 80;
3)	атмосферное давление, кПа	от 84 до 106,7;
4)	напряжение питания блока сетевого питания. В	220 ± 22:

5) температура градуировочных и контрольных растворов, °С

20 ± 5;

6) вибрация, тряска, удары, влияющие на работу прибора

отсутствуют;

7) сопротивление, эквивалентное сопротивлению в цепи измерительного электрода, МОм 0; 8) сопротивление, эквивалентное сопротивлению в цепи

электрода сравнения, кОм 0;

9) время установления рабочего режима, мин не менее 30;

Поверка (калибровка) производится при питании преобразователя от сети через блок сетевого питания.

- **5.3.2** Схема установки для проверки основных характеристик преобразователя приведена в приложении A.
- **5.3.3** Таблицы зависимости сопротивления термодатчика от температуры анализируемой среды, а также номинальных значений ЭДС электродных систем, используемые при проверках, приведены в приложениях Б, В и Г.

5.4 Подготовка к поверке (калибровке)

- **5.4.1** Перед проведением поверки (калибровки) приборы должны быть выдержаны при температуре (20 ± 5) °C и относительной влажности до 80 % не менее 24 ч.
- **5.4.2** Перед проведением первичной поверки (калибровки) собрать схему согласно приложения A.
 - 5.4.3 Операции поверки (калибровки) производятся на любом из каналов прибора.
- **5.4.4** Приборы и средства поверки (калибровки) должны быть подготовлены к работе и отградуированы, согласно указаний их эксплуатационной документации.

5.5 Проведение поверки (калибровки)

5.5.1 Внешний осмотр

При проведении внешнего осмотра должно быть установлено соответствие поверяемого прибора следующим требованиям:

- не допускаются дефекты корпуса, влияющие на работоспособность прибора, пятна, нечеткое изображение надписей;
 - не допускается повреждение кабелей составных частей прибора.

На поверку (калибровку) приборы должны поступать в следующей комплектности:

- 1) преобразователь;
- 2) блок питания:
- 3) комплект кабелей;
- 4) эксплуатационная документация.

На периодическую поверку (калибровку), кроме того, должны предоставляться:

- 5) комплект электродов;
- 6) термодатчик;
- 7) штатив.

5.5.2 Опробование

Опробование преобразователя производится следующим образом:

- 1) включить питание преобразователя, на дисплее должно высветиться:
- произвольное значение в pH, pX и других единицах, соответствующих режиму измерения преобразователя, установленных перед выключением;
- надписи: «Канал» и номер канала установленного перед выключением, вид термокомпенсации («Тр») и температура раствора установленная перед выключением, вид иона, дата и время включения.
- 2) проверить работоспособность органов управления: нажатие клавиш должно сопровождаться соответствующим изменением информации на дисплее;
 - 3) подключить термодатчик, надпись «Тр» должна погаснуть.
- **5.5.3** Контроль основной абсолютной погрешности приборов производится в условиях, оговоренных в разделе 5.3.
- **5.5.3.1** Контроль основной абсолютной погрешности прибора в режиме измерения температуры анализируемого раствора производить путем сравнения показаний дисплея с показаниями контрольного ртутного термометра следующим образом:
- погрузить термодатчик на глубину не менее 30 мм и контрольный термометр в сосуд с водой комнатной температуры;
- после установления показаний зафиксировать значения температуры по дисплею прибора и термометру;
- аналогично зафиксировать значения температуры при погружении термодатчика и контрольного термометра в сосуд с водой температурой (0 ± 5) °C и (100 ± 5) °C. Допускается использовать тающий лед и кипящую воду.

Основную абсолютную погрешность прибора рассчитать по формуле (10).

$$\Delta = t_{\text{пр}} - t_{\text{терм}}, \tag{10}$$

где Δ - основная абсолютная погрешность прибора в режиме измерения температуры, ${}^{\circ}C$;

t_{пр} - значение температуры по дисплею прибора, °С;

t_{терм} - значение температуры воды, измеренное термометром, °С.

Основная абсолютная погрешность должна быть не более \pm 0,5 °C.

5.5.3.2 Контроль основной абсолютной погрешности прибора в режиме измерения рН

При проведении проверки температуры растворов, используемых для градуировки, и контрольного не должны отличаться более чем на 1,5 °C. Для этого все растворы следует выдержать при комнатной температуре не менее часа.

Контроль основной абсолютной погрешности производят по рабочим эталонам рН ГОСТ 8.135-2004 при автоматической термокомпенсации по следующей методике.

- 1) Отградуировать прибор в режиме измерения pH, согласно указаниям эксплуатационной документации, используя рабочие эталоны pH при 25°C pH = 1,646, pH = 9,179;
- 2) Измерить значение pH в растворе pH = 4,005 и pH = 6,857 при 25°C, зафиксировать значение температуры раствора t_p , °C.

Основную абсолютную погрешность прибора рассчитать по формуле (11).

$$\Delta = pH_{np} - pH_{\tau}, \tag{11}$$

где Δ - основная абсолютная погрешность прибора в режиме измерения pH; pH_{пр} - значение pH раствора по дисплею прибора;

 $pH_{\scriptscriptstyle T}$ - табличное значение pH раствора при данной температуре t_p (приведено в ГОСТ 8.134-2004).

Основная абсолютная погрешность прибора в режиме измерения pH не должна превышать, pH \pm 0,03.

- **5.5.4** Определение дополнительной абсолютной погрешности измерений рН, связанной с изменением температуры контролируемой среды (погрешность термокомпенсации), производят при автоматической термокомпенсации по следующей методике.
- 1) Отградуировать прибор в режиме измерения pH, согласно указаниям эксплуатационной документации, используя рабочие эталоны pH1 = 4,005 и pH2 = 9,179, при температуре ($25 \pm 0,2$) °C;
 - 2) Измерить значение pH в растворе pH2 при температуре (60 ± 0.2) °C.
 - 3) Рассчитать погрешность температурной компенсации Δ' по формуле

$$\Delta' = pH_{60 \text{ usm}} - pH_{60 \text{ st}}$$
 (12)

где р $H_{60 \text{ изм}}$ — значение рH контрольного раствора рH2, измереное при температуре (60 ± 0.2) °C:

 $pH_{60 \ 9T}$ - табличное значение pH контрольного раствора при температуре $(60\pm0,2)$ °C, равное 8,97 (ГОСТ 8.135-2004);

Погрешность температурной компенсации прибора в режиме измерения ионов водорода не должна превышать pH, \pm 0,03.

- 5.5.5 Контроль основной абсолютной погрешности преобразователя
- **5.5.5.1** Основную абсолютную погрешность преобразователя в режиме измерения окислительно-восстановительного потенциала (Eh) контролировать в точках N, равных 0, 500; 1000; 1900; 2995 мВ обеих полярностей на установке следующим образом:

подавая от компаратора на вход преобразователя напряжение N зафиксировать показания преобразователя E (в случае нестабильных показаний – наиболее отличающееся от напряжения N).

Основную абсолютную погрешность рассчитать по формуле (13).

$$\Delta = \mathsf{U} - \mathsf{E},\tag{13}$$

где Δ - основная абсолютная погрешность преобразователя, мB;

U – напряжение, подаваемое от компаратора, соответствующее проверяемой числовой отметке N, мB;

Е – показание преобразователя, мВ.

Основная абсолютная погрешность преобразователя должна быть не более \pm 0,7 мВ.

5.5.5.2 Основную абсолютную погрешность преобразователя в режиме измерения температуры определять на установке для значений температуры N, равных минус 20,0 °C; 20,0 °C; 80,0 °C; 150,0 °C следующим образом:

устанавливая сопротивление магазина сопротивлений, соответствующее указанным выше значениям N, фиксируют показания дисплея, наиболее отличающееся от значения N.

Основную абсолютную погрешность преобразователя рассчитывают по формуле (14).

$$\Delta = \mathsf{T}_{\mathsf{X}} - \mathsf{N},\tag{14}$$

где Δ - основная абсолютная погрешность преобразователя, °C; T_x - значение температуры, зафиксированное на дисплее, °C.

Основная абсолютная погрешность преобразователя не должна превышать $\pm\,0.5\,^{\circ}\text{C}.$

- **5.5.6** Дополнительные погрешности преобразователя, обусловленные изменением влияющих величин, контролировать на установке после градуировки преобразователя, согласно указаний эксплуатационной документации, при ручной установке температуры и температуре раствора, равной 20,0 °C, в режиме измерения рН.
- **5.5.6.1** Дополнительную погрешность преобразователя, обусловленную изменением сопротивления в цепи измерительного электрода, контролировать следующим образом:
- установить на имитаторе электродной системы сопротивление в цепи измерительного электрода, равное 0 МОм;
- подавая на вход преобразователя напряжение от компаратора, установить на дисплее значение pH = 14,000, зафиксировать напряжение по компаратору;
- установить на имитаторе электродной системы сопротивление в цепи измерительного электрода, равное 1000 МОм и, изменяя напряжение от компаратора, установить на дисплее pH = 14,000.

Дополнительную погрешность преобразователя, обусловленную изменением сопротивления в цепи измерительного электрода, рассчитать по формуле (15).

$$\delta_{u_{3M}} = \frac{U_1 - U_0}{S_{\star}},\tag{15}$$

где $\delta_{\text{изм}}$ - дополнительная погрешность преобразователя;

 U_0 - значение напряжения по компаратору при нулевом сопротивлении в цепи измерительного электрода, мВ;

U₁ – значение напряжения по компаратору при сопротивлении в цепи измерительного электрода 1000 МОм, мВ;

S_t - численное значение крутизны электродной системы, равное 58,16 мВ/рН.

Дополнительная погрешность не должна превышать pH \pm 0,014.

- **5.5.6.2** Дополнительную погрешность преобразователя, обусловленную изменением сопротивления в цепи электрода сравнения, контролировать следующим образом:
- установить на имитаторе электродной системы сопротивление в цепи электрода сравнения 0 кОм;
- подавая на вход преобразователя напряжения от компаратора, установить на дисплее значение pH = 14,000 и зафиксировать напряжение по компаратору;
- установить на имитаторе электродной системы сопротивление в цепи электрода сравнения 20 кОм и, изменяя напряжение от компаратора, установить на дисплее pH = 14,000.

Дополнительную погрешность преобразователя, обусловленную изменением сопротивления в цепи электрода сравнения, рассчитать по формуле (16).

$$\delta_{ecn} = \frac{U_1 - U_0}{S_t} \,, \tag{16}$$

где $\delta_{\text{всп}}$ - дополнительная погрешность преобразователя;

 U_0 - значение напряжения по компаратору при нулевом сопротивлении в цепи электрода сравнения, мВ;

U₁ – значение напряжения по компаратору при сопротивлении в цепи электрода сравнения 20 кОм, мВ;

S_t - численное значение крутизны электродной системы, равное 58,16 мВ/рН.

Дополнительная погрешность должна быть не более pH \pm 0,007.

5.6 Оформление результатов поверки (калибровки)

- **5.6.1** При проведении операций поверки оформляют протокол результатов измерений по поверке произвольной формы.
- **5.6.2** Положительные результаты поверки оформляют путем выдачи свидетельства о поверке или нанесением поверительного клейма в соответствии с ПР 50.2.006-94 и ПР 50.2.007-94.
- **5.6.3** При отрицательных результатах поверки выдают извещение о непригодности с указанием причин по ПР 50.2.006-94, свидетельство аннулируют, клеймо гасят, а прибор к применению не допускают.

6 ТРАНСПОРТИРОВАНИЕ

Приборы транспортируются в упакованном виде в закрытом транспорте любого вида (в самолетах - в отапливаемых герметизированных отсеках). При железнодорожных перевозках вид отправки - мелкие.

Условия транспортирования приборов в упаковке предприятия-изготовителя соответствуют условиям хранения 5 по ГОСТ 15150-69.

Не допускается перевозка в транспортных средствах, имеющих следы перевозки активно действующих химикатов, цемента и угля.

Во время погрузочно-разгрузочных работ и транспортирования ящики не должны подвергаться резким ударам и воздействию атмосферных осадков.

Способ укладки ящиков на транспортное средство должен исключать их перемещение в пути следования.

После транспортирования при отрицательных температурах приборы перед эксплуатацией должны быть выдержаны в нормальных условиях в течение 24 ч.

7 ПРАВИЛА ХРАНЕНИЯ

7.1 Хранение приборов до ввода в эксплуатацию в упаковке предприятияизготовителя должно соответствовать условиям хранения 1 по ГОСТ 15150-69. Предельный срок защиты без переконсервации - 3 года.

Данное требование относится только к хранению в складских помещениях потребителя и поставщика, но не распространяется на хранение в железнодорожных складах.

7.2 Хранение приборов без упаковки следует производить при температуре окружающего воздуха от 10 °C до 35°C и относительной влажности до 80 % при температуре 25 °C.

В помещениях для хранения приборов не должно быть пыли, паров кислот, щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию.

8 КОНСЕРВАЦИЯ

Иономер И-160МИ подвергнут на предприятии-изготовителе консервации согласно ГОСТ 9.014-78 по варианту защиты ВЗ-10 и упакован по варианту упаковки ВУ-5.

Предельный срок защиты без переконсервации 3 года.

При консервации прибора из электродов сравнения выливается электролит, электроды промываются дистиллированной водой и просушиваются.

Сведения о переконсервации прибора приведены в таблице 7.

Таблица 7

Дата	Наименование работы	Срок действия, годы	Должность, фамилия и подпись

9 ДВИЖЕНИЕ ПРИБОРА ПРИ ЭКСПЛУАТАЦИИ

9.1 Сведения о движении прибора при эксплуатации приведены в таблице 8.

Таблица 8

Дата	Где	Пото	На	работка	Пришино	Подпись лица,
упаков- ки	установ- лено	Дата снятия	с начала экс- плуатации	после последнего ремонта	Причина снятия	проводившего установку (снятие)
101	310110		Плуатации	ремопта		yoranobity (orbitio)

9.2 Сведения о закреплении прибора при эксплуатации приведены в таблице 9.

Таблица 9

Наименование изделия	Должность, фами- лия и инициалы	Основание (на номер и дата Закрепление	Примечание

10 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

соответс [.] щей техн	твии с обязательными требов	аводской № изготовлен и принят в аниями государственных стандартов, действую- ующими ТУ 4215-053-89650280-2009, и признан
	К	онтролер ОТК
МΠ		
	личная подпись	расшифровка подписи
Дата и	изготовления	
		число, месяц, год

11 СВЕДЕНИЯ О ПОВЕРКЕ (КАЛИБРОВКЕ)

с обязат	мер лабораторный И-160МИ за ельными требованиями государ годным к эксплуатации	аводской № поверен рственных стандартов Российско	в соответствии й Федерации и
		Поверитель	
МΠ			
	личная подпись	расшифровка подписи	
Дата	поверки (калибровки)		
• •	,	число, месяц, год	

12 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- **12.1** Изготовитель гарантирует соответствие иономера И-160МИ требованиям технических условий, при соблюдении потребителем правил эксплуатации, транспортирования и хранения.
 - 12.2 Гарантийный срок хранения 6 месяцев со дня изготовления.
- **12.3** Гарантийный срок эксплуатации иономера 24 месяца со дня изготовления. Гарантийный срок эксплуатации электродов, входящих в комплект поставки в соответствии с их эксплуатационной документацией.
- 12.4 Потребитель имеет право на гарантийное обслуживание иономера в течение гарантийного срока эксплуатации. Гарантийный ремонт иономера И-160МИ, его принадлежностей и сменных частей вплоть до замены иономера в целом, если они за это время выйдут из строя или их характеристики окажутся ниже норм технических требований, производится безвозмездно при условии, что их работоспособность была нарушена вследствие дефекта изготовления.
 - 12.5 Гарантийное обслуживание не производится в следующих случаях:
 - отсутствие или повреждение пломб;
 - нарушение правил эксплуатации прибора;
- наличие механических повреждений, попытки ремонта кем-либо, кроме предприятий, осуществляющих гарантийное обслуживание.
- **12.6** По вопросам гарантийного и послегарантийного обслуживания обращаться по адресу предприятия изготовителя:

Россия:109202, г. Москва, Шоссе Фрезер,12;

ООО «Измерительная техника».

Тел./факс: +107(495) 232-49-74, 232-42-14, E-mail: izmteh@ izmteh.ru

Гарантийный срок продлевается на время от подачи рекламации до введения в строй иономера силами предприятий, осуществляющих гарантийный ремонт.

12.7 Сведения о рекламациях

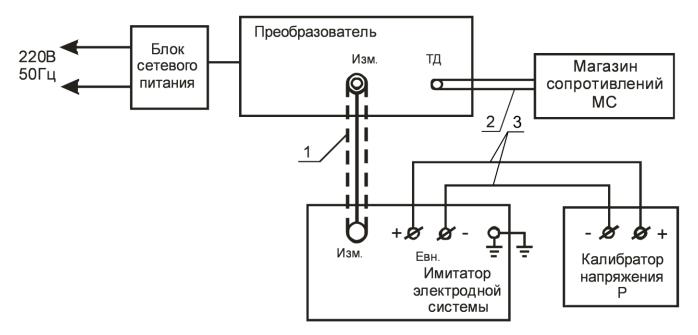
При неисправности иономера в период гарантийного срока потребителем должен быть составлен акт с указанием признаков неисправностей.

Все предъявляемые рекламации и их краткое содержание регистрируются. Сведения о рекламациях и принятых по ним мерах вносятся в таблицу 10.

Таблица 10

Дата ре- кламации	Краткое содержание	Исх. № и дата документа	Принятые меры	Отметка ОТК

13 ПРОЧИЕ СВЕДЕНИЯ


Количество драгоценных металлов, входящих в электроды, в соответствии с паспортами на них.

Сильнодействующих ядовитых веществ прибор не содержит. Утилизация производится в соответствии с правилами и нормами, действующими на предприятии пользователя.

ПРИЛОЖЕНИЕ А

(обязательное)

Схема установки для проверки основных характеристик преобразователя И-160МИ

- 1. Кабель ГРБА6.644.001-01
- 2. Кабель ГРБА6.644.037
- 3. Кабель ГРБА6.644.039

ПРИЛОЖЕНИЕ Б

(справочное)

Основные технические данные термодатчика

Номинальное сопротивление платинового термодатчика (ТДЛ-1000-06) при температуре (t) в интервале от минус 20 С до плюс 150 °C определяется уравнением

$$R = 1000 \cdot [1 + 3,9083 \cdot 10^{-3} \cdot t - 5,7750 \cdot 10^{-7} \cdot t^{3}]$$
 (5.1)

Номинальные значения сопротивления платинового термодатчика при различных температурах приведены в таблице Б.1.

Таблица Б.1

Температура, °С	- 20	0	20	40	50	60	80	100	150
Сопротивление термодатчика, Ом	921,6	1000	1077,9	1155,4	1194,0	1232,4	1309,0	1385,1	1573,3

ПРИЛОЖЕНИЕ В

(справочное)

Номинальные статические характеристики преобразования ЭДС электродной системы для измерения одновалентных катионов

Номинальная статическая характеристика преобразования ЭДС электродной системы с нормированными координатами изопотенциальной точки р $X_i = 7,00$; $E_i = -25$ мВ (например, ЭС-1060Z/7; ЭС-1030Z/7, где Z – любая цифра от 1 до 9) характеризуемая уравнением:

$$E = E_i - (54,196 + 0,1984 \cdot t_p) \cdot (pX - pX_i), \tag{B.1}$$

где E - ЭДС электродной системы, мВ;

 E_i = -25 мB, pX_i = 7,00, – координаты изопотенциальной точки;

 t_p - температура раствора, °С;

рХ – показатель активности ионов в растворе.

Пример значений ЭДС, мВ, электродной системы в зависимости от измеряемой величины рХ при различных температурах, рассчитанных по формуле В.1, приведены в таблице В.1.

Таблица В.1

T °C	-20	0	20	40	50	60	80	100	150
рX					Е, мВ				
-20,00	1331,16	1438,29	1545,43	1652,56	1706,13	1759,70	1866,84	1973,97	2241,81
-1,000	376,82	408,57	440,31	472,06	487,93	503,80	535,54	567,29	646,65
0,000	326,60	354,37	382,15	409,92	423,81	437,70	465,48	493,25	562,69
1,000	276,37	300,18	323,98	347,79	359,70	371,60	395,41	419,22	478,74
1,644			286,53						
1,650				307,41					
1,660						327,97			
2,000	226,14	245,98	265,82	285,66	295,58	305,50	325,34	345,18	394,78
3,000	175,91	191,78	207,66	223,53	231,46	239,40	255,27	271,14	310,82
4,000	125,68	137,59	149,49	161,40	167,35	173,30	185,20	197,11	226,87
4,001			149,43						
4,027				159,72					
4,080						168,01			
5,000	75,46	83,39	91,33	99,26	103,23	107,20	115,14	123,07	142,91
6,000	25,23	29,20	33,16	37,13	39,12	41,10	45,07	49,04	58,96
6,817						-12,90			
6,823				-14,00					
6,873			-17,61						
7,000	-25,00	-25,00	-25,00	-25,00	-25,00	-25,00	-25,00	-25,00	-25,00
8,000	-75,23	-79,20	-83,16	-87,13	-89,12	-91,10	-95,07	-99,04	-108,96
8,965						-154,89			
9,000	-125,46	-133,39	-141,33	-149,26	-153,23	-157,20	-165,14	-173,07	-192,91
9,066				-153,36					
9,225			-154,41						
10,000	-175,68	-187,59	-199,49	-211,40	-217,35	-223,30	-235,20	-247,11	-276,87
11,000	-225,91	-241,78	-257,66	-273,53	-281,46	-289,40	-305,27	-321,14	-360,82
11,423						-317,36			
11,959				-333,11					
12,000	-276,14	-295,98	-315,82	-335,66	-345,58	-355,50	-375,34	-395,18	-444,78
12,602			-350,83						
13,000	-326,37	-350,18	-373,98	-397,79	-409,70	-421,60	-445,41	-469,22	-528,74
14,000	-376,60	-404,37	-432,15	-459,92	-473,81	-487,70	-515,48	-543,25	-612,69
20,000	-677,96	-729,55	-781,13	-832,72	-858,51	-884,30	-935,88	-987,47	-1116,4

ПРИЛОЖЕНИЕ Г

(справочное)

Номинальные статические характеристики преобразования ЭДС электродной системы для измерения двухвалентных анионов

Номинальная статическая характеристика преобразования ЭДС электродной системы с ненормированными координатами изопотенциальной точки для измерения рХ двухвалентных анионов при температуре 20 °C, характеризуемая уравнением:

$$E = E_H - 29,08 \cdot (pX - pX_H),$$
 (Γ.1)

где E - ЭДС электродной системы, мВ;

 E_{H} - значение ЭДС электродной системы в начальной точке диапазона измерения, мВ; $E_{\text{H}} = 0$ мВ;

рХ_н - показатель активности ионов в начальной точке диапазона измерения;

рХ – показатель активности ионов в растворе.

Пример значений ЭДС, мВ, электродной системы в зависимости от измеряемой величины рХ двухвалентных анионов при температуре 20 °C, рассчитанных по формуле Г.1, приведены в таблице Г.1.

Таблица Г.1

рХ	0,00	1,00	2,00	3,00	4,00	5,00	6,00	7,00	8,00	9,00	14,00
Е, мВ	-87,24	-58,16	-29,08	0,00	29,08	58,16	87,24	116,33	145,41	174,49	319,90

ПРИЛОЖЕНИЕ Е

(справочное)

Перечень некоторых методов анализа различных объектов, которые могут проводиться с помощью иономера И-160MИ.

1. АНАЛИЗ ВОД

Объект	Определяе-		Документ		Рекомендуе-
анализа	мый параметр	Обозначение	бозначение Наименование		мые электроды
1	2	3	4	5	6
Вода (питьевая)	F ⁻	ΓΟCT 4386-89	Вода питьевая. Методы определения массовой концентрации фторидов.	Прямая потен- циометрия	ЭЛИС-131F ЭСр-10103/3,5
	Ca ⁺²	ΓΟCT 23268.5-78	Воды минеральные питьевые лечебные, лечебно-столовые и природные столовые. Методы определения ионов кальция и магния.	Прямая потен- циометрия	ЭЛИС-121Ca ЭСр-10103/3,5
Воды (минеральные)	NO ₃ -	ГОСТ 23268.9-78	Воды минеральные питьевые лечебные, лечебно-столовые и природные столовые. Методы определения нитрат-ионов.	Прямая потен- циометрия	ЭЛИС-121NO3 ЭСр-10103/3,5
	F ⁻	ΓΟCT 23268.18-78	Воды минеральные питьевые лечебные, лечебно-столовые и природные столовые. Методы определения фторид-ионов.	Прямая потен- циометрия	ЭЛИС-131F ЭСр-10103/3,5
	HCO₃ ⁻	ГОСТ 23268.3-78	Воды минеральные питьевые лечебные, лечебно-столовые и природные столовые. Методы определения гидрокарбонатионов.	Титрование	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Воды	NH ₄ +	РД 52.24.394-95	Методические указания. Методика выполнения измерений массовой концентрации ионов аммония в поверхностных водах суши потенциометрическим методом с ионселективным электродом.	Прямая потен- циометрия	ЭЛИС-121NH4 ЭСр-10103/3,5
(поверхност- ные суши)	NO ₃ -	РД 52.24.367.95	Методические указания. Методика выполнения измерений массовой концентрации нитратов в поверхностных водах суши потенциометрическим методом с ионселективным электродом.	Прямая потен- циометрия	ЭЛИС-121NO3 ЭСр-10103/3,5
Воды	Na+	РД 52.24.365-2008	Массовая концентрация натрия в водах. Методика выполнения измерений потенциометрическим методом с ионселективным электродом.	Прямая потен- циометрия	ЭЛИС-212Na ЭСр-10103/3,5
(природные и — очищенные сточные)	K+	РД 52.24.415-2007	Массовая концентрация ионов калия в водах. Методика выполнения измерений потенциометрическим методом с ионселективным электродом.	Прямая потен- циометрия	ЭЛИС-121К ЭСр-10101/3,5 (1 M Li ₂ SO ₄)

ГРБА2.840.009 ФО

1	2	3	4	5	6
Воды (природные и	F ⁻	РД 52.24.360-2008	Массовая концентрация фторидов в водах. Методика выполнения измерений потенциометрическим методом с ионселективным электродом.	Прямая потен- циометрия	ЭЛИС-131F ЭСр-10103/3,5
	Cl ⁻	РД 52.24.361-2008	Массовая концентрация хлоридов в водах. Методика выполнения измерений потенциометрическимским методом с ионселективным электродом.	Прямая потен- циометрия	ЭЛИС-131СI ЭСр-10101/3,5 (1M KNO ₃)
очищенные сточные)	HCO₃⁻/ щелочность	РД 52.24.493-2006	Массовая концентрация гидрокарбонатов и величина щелочности поверхностных вод суши и очищенных сточных вод. Методика выполнения титриметрическим методом.	Титрование	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
	рН	РД 52.24.495.2005	Водородный показатель и удельная электрическая проводимость вод. Методика выполнения измерений электрометрическим методом.	Прямая потен- циометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Воды (технологиче- ские ТЭС)	Na+	РД 34.37.528-94	Методика выполнения измерений содержания натрия в технологических водах ТЭС потенциометрическим методом с помощью лабораторных ионометров.	Прямая потен- циометрия	ЭЛИС-212Na ЭСр-10103/3,5

2. АНАЛИЗ ПОЧВ, ГРУНТОВ И ГОРНЫХ ПОРОД

1	2	3	4	5	6
	рН	ГОСТ 26423-85	Почвы. Метод определения удельной электрической проводимости, pH и плотного остатка водной вытяжки почв.	Прямая потен- циометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
	рН	FOCT 26483-85	Почвы. Приготовление солевой вытяжки и определение ее рН по методу ЦИНАО.	Прямая потен- циометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
	Кислотность (гидролитиче- ская)	ГОСТ 26212-91	Почвы Определение гидролитической кислотности по методу Каппена в модификации ЦИНАО.	Прямая потен- циометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Почвы	Кислотность (обменная)	ГОСТ 26484-85	Почвы. Метод определения обменной кислотности.	Титрование	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
	NO ₃ -	ГОСТ 26951-86	Почвы. Определение нитратов ионометрическим методом.	Прямая потен- циометрия	ЭЛИС-121NO3 ЭСр-10103/3,5
	Cl	ГОСТ 26425-85	Почвы. Методы определения иона хлорида в водной вытяжке.	Прямая потен- циометрия	ЭЛИС-131СI ЭСр-10101/3,5 (1M KNO ₃)
	CO ₃ -2/ HCO ₃ -	ГОСТ 26424-85	Почвы. Метод определения ионов карбоната и бикарбоната в водной вытяжке почв.	Титрование	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
	K+	OCT 10-271-2000	Определение легкоподвижного фосфора и калия в почве с использованием кальций-хлор вытяжки.	Прямая потен- циометрия	ЭЛИС-121К ЭСр-10101/3,5 (1 M NaCl)

1	2	3	4	5	6
Грунты тепличные	рН	ГОСТ 27753.3-88	Грунты тепличные. Метод определения рН водной суспензии.	Прямая потен- циометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
	K+	ГОСТ 27753.6-88	Грунты тепличные. Методы определения водорастворимого калия.	Прямая потен- циометрия	ЭЛИС-121К ЭСр-10101/3,5 (1 M NaCl)
тепличные	Cl ⁻	ГОСТ 27753.11-88	Грунты тепличные. Методы определения хлорида.	Прямая потен- циометрия	ЭЛИС-131СI ЭСр-10101/3,5 (1M KNO₃)
	NO ₃ -	FOCT 27753.7-88	Грунты тепличные. Методы определения нитратного азота.	Прямая потен- циометрия	ЭЛИС-121NO3 ЭСр-10103/3,5
Торф	NO ₃ -	ГОСТ 27894.4-88	Торф и продукты его переработки для сельского хозяйства. Методы определения нитратного азота.	Прямая потен- циометрия	ЭЛИС-121NO3 ЭСр-10103/3,5
Породы (вскрышные и вмещающие)	рН	ГОСТ 17.5.4.01-84	Охрана природы. Рекультивация земель. Метод определения рН водной вытяжки вскрышных и вмещающих пород.	Прямая потен- циометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5

3. АНАЛИЗ ПРОДУКТОВ ПИТАНИЯ

1	2	3	4	5	6
	рН	ГОСТ 26781-85	Метод измерений рН	Прямая потен- циометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
	Na+	ВНИМИ - 05 - 98	Методика количественного ионометрического анализа молока на содержание ионов натрия, в том числе для выявления фальсификации содой.	Прямая потен- циометрия	ЭЛИС-112Na ЭСр-10103/3,5
Молоко	NH ₄ +	ВНИМИ - 01 - 98	Методика количественного ионометрического анализа молока на содержание ионов аммония, в том числе для выявления фальсификации его гидроокисью аммония.	Прямая потен- циометрия	ЭЛИС-121NH4 ЭСр-10103/3,5
	Ca+2	ВНИМИ - 04 — 98	Методика количественного ионометрического анализа молока на содержание ионов кальция.	Прямая потен- циометрия	ЭЛИС-121Са ЭСр-10103/3,5
	Cl-	ВНИМИ – 02 – 98	Методика количественного ионометрического анализа молока на содержание ионов хлора, в том числе для выявления анормального молока.	Прямая потен- циометрия	ЭЛИС-131СI ЭСр-10101/3,5 (1M KNO ₃)
	Белок	ГОСТ 25179-90	Метод определения белка (4. Метод формольного титрования).	Титрование	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5

ГРБА2.840.009 ФО

1	2	3	4	5	6
Молоко и молочные	pH	ВНИМИ - 03 - 98	Методика выполнения измерений рН молока и молочных продуктов.	Прямая потен- циометрия	ЭСК-10603/4 или ЭС-10603/4 ЭСр-10103/3,5
продукты	Кислотность	ГОСТ 3624-92	Титриметрические методы определения кислотности (2. Потенциометрический метод).	Титрование	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Молочные продук-	рН	ГОСТ 30648.5-99	Продукты молочные для детского питания. Метод определения активной кислотности.	Прямая потен- циометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
ты для детского питания	Кислотность	ГОСТ 30648.4-99	Титриметрические методы определения кислотности.	Титрование	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Консервы молоч- ные сгущенные и продукты молоч- ные сухие	Кислотность	ГОСТ 30305.3-95	Титриметрический метод выполнения измерений кислотности.	Титрование	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Йогурты	Кислотность (титруемая)	ГОСТ Р 51455-99	Йогурты. Потенциометрический метод определения титруемой кислотности в йогуртах.	Титрование	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Масло сливочное	pH	ГОСТ Р 51456-99	Масло сливочное. Потенциометрический метод определения активной кислотности плазмы.	Прямая потен- циометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Соки фруктовые и овощные	Cl-	ГОСТ Р 51439-99	Соки плодовые и овощные. Метод определения хлоридов с помощью потенциометрического титрования.	Титрование	Ag(AgCl) – элек- трод ЭСр-10101/3,5 (1M KNO ₃)
овощные	Формольное число	ГОСТ Р 51122-97	Соки плодовые и овощные. Потенциометрический метод определения формольного числа.	Титрование	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Пиво	Кислотность	ГОСТ 12788-87	Пиво. Методы определения кислотности.	Прямая потен- циометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Водка	Щелочность	FOCT 5363-93	Водка. Правила приемки и методы анализа (4.8. Определение щелочности).	Титрование	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Патока	рН	ГОСТ 5194-91	Патока крахмальная. Технические условия (3.8. Определение pH среды).	Прямая потен- циометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Масло подсолнечное	Кислотное число	ГОСТ 26597-89	Подсолнечник. Метод определения кислотного числа масла с применением рН-метра.	Прямая потен- циометрия	ЭС-10603/7 ЭСр-10101/3,5

1	2	3	4	5	6
Мясо и мясные	рН	FOCT P 51478- 99	Мясо и мясные продукты. Контрольный метод определения концентрации водородных ионов (pH).	Прямая по- тенциометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
продукты	Cl-	FOCT P 51444- 99	Мясо и мясные продукты. Потенциометрический метод определения массовой доли хлоридов.	Титрование	Ag – электрод ЭСр-10101/3,5 (1M KNO₃)
Продел и ороши	NO ₃ -	ГОСТ 29270-95	Продукты переработки плодов и овощей. Методы определения нитратов.	Прямая по- тенциометрия	ЭЛИС-121NO3 ЭСр-10103/3,5
Плоды и овощи	Витамин С	ГОСТ 24556-89	Определение витамина С в продуктах переработки плодов и овощей методом потенциометрического титрования.	Титрование	Ag – электрод ЭСр-10101/3,5
Продукты растениеводства	NO ₃ -	МУ 5048-89	Методические указания по определению нитратов и нитритов в продукции растениеводства.	Прямая по- тенциометрия	ЭЛИС-121NO3 ЭСр-10103/3,5
Vaugannu	рН	ГОСТ 28972-91	Консервы и продукты из рыбы и нерыбных объектов промысла. Метод определения активной кислотности (рН).	Прямая по- тенциометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Консервы	Кислотность	ГОСТ 27082-89	Консервы и пресервы из рыбы и морепродуктов. Методы определения общей кислотности. (3. Потенциометрический метод)	Титрование	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Продукты и консервы	рН	ГОСТ 26188-84	Продукты переработки плодов и овощей, консервы мясные и мясорастительные. Метод определения рН.	Прямая по- тенциометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Крахмал	CI-	ГОСТ 7698-93	Крахмал. Правила приемки и методы анализа. (Приложение 7. Определение содержания хлоридов. Потенциометрический метод. ИСО 5810-82).	Титрование	Ag(AgCl) – электрод ЭСр-10101/3,5 (1M KNO₃)

4. АНАЛИЗ НЕФТИ И НЕФТЕПРОДУКТОВ

	Cl ⁻	ГОСТ 21534-76		Метод А		Ag – электрод ЭС-10603/7
Нефть			Нефть. Методы определения хлористых солей.	Метод Б	Титрование	Ag – электрод ЭСр-10101/3,5 (1M KNO₃)
Нефтепродукты и смазочные материалы	Числа нейтрализации	ГОСТ 11362-96	Нефтепродукты и смазочные материалы. Чы лизации. Метод потенциометрического титро	Титрование	ЭС-10603/7 ЭСр-10103/3,5	
Нофтопровиля	Общее щелочное число	FOCT 30050-93	Нефтепродукты. Общее щелочное число. М циометрического титрования хлорной кисло	Титрование	ЭС-10603/7 ЭСр-10103/3,5	
Нефтепродукты	Сера (меркаптановая)	ГОСТ Р 52030-2003	Нефтепродукты. Потенциометричекий мето ния меркаптановой серы.	Титрование	Ag(Ag ₂ S) – электрод, ЭС-10603/7	
Топливо для двигателей	Сера (меркапта- новая и сероводо- ГОСТ 17323-71		Топливо для двигателей. Метод определентановой и сероводородной серы потенционтитрованием.	Титрование	Ag(Ag₂S) – электрод, ЭСр-10101/3,5	

ГРБА2.840.009 ФО

5. АНАЛИЗ ХИМИЧЕСКИХ ВЕЩЕСТВ

1	2	3	4	5	6
Тальк и талькомагнезит	рН	ГОСТ 19728.18-2001	Тальк и талькомагнезит. Определение концентрации водородных ионов (рН) водной суспензии и водной вытяжки.	Прямая по- тенциометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Концентраты цинковые	F ⁻	ГОСТ 14048 7-80 — ГКОНЦЕНТОАТЫ ПИНКОВЫЕ МЕТОЛЫ ОПРЕЛЕПЕНИЯ ФІТОРА — Г		Прямая по- тенциометрия	ЭЛИС-131F ЭСр- 10103/3,5
Сера	Углерод	ГОСТ 30355.1-96	Сера техническая. Определение общего содержания углерода. Титриметрический метод.	Титрование	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Мочевина	Изменение рН в присутствии фор- мальдегида	ГОСТ Р 50568.6-93	Мочевина (карбамид) техническая. Потенциометрический метод определения изменения рН в присутствии формальдегида.	Титрование	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
(карбамид)	Буферная емкость	ГОСТ 32471-2013	Мочевина (карбамид). Потенциометрический метод определения буферной емкости.	Титрование	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Латекс (концентрат)	Борная кислота	ГОСТ 28861-90	Концентрат натурального латекса. Определение содержания борной кислоты.	Титрование	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Фталевый ангидрид	Фталевая кислота	ГОСТ 24445.2-80	Ангидрид фталевый технический. Методы определения содержания фталевой кислоты.	Титрование	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Ниобия пятиокись	F ⁻	ГОСТ Р 50233.2-92	Ниобия пятиокись. Ионометрический метод определения массовой доли фтора.	Прямая по- тенциометрия	ЭЛИС-131F ЭСр-10103/3,5
Азотная кислота	Cl-	ГОСТ Р 50706.4-94	Потенциометрический метод определения хлоридионов в азотной кислоте	Титрование	Ag – электрод ЭСр-10101/3,5 (1M KNO₃)
Малеиновый ангидрид	Кислотность (свободная)	ГОСТ Р ИСО 1390/3-93	Ангидрид малеиновый технический. Методы испытаний. Часть III. Потенциометрический метод определения свободной кислотности.	Титрование	ЭС-10603/7 ЭСр-10101/3,5
Пигменты и	рН	ГОСТ 21119.3-91	Общие методы испытаний пигментов и наполнителей. Определение pH водной суспензии.	Прямая по- тенциометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
наполнители	Кислот- ность/щелочность	ГОСТ 21119.12-92	Общие методы испытаний пигментов и наполнителей. Определение кислотности или щелочности водного экстракта.	Титрование	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Смолы эпоксидные	CI-	ГОСТ 22457-90	Смолы эпоксидные. Метод определения массовой доли хлора.	Титрование	Ag – электрод ЭСр-10101/3,5 (1M KNO3)

1	2	3	4	5	6
Фосфор и неорганические соединения фос- фора	рН	ГОСТ 24024.5-80	Фосфор и неорганические соединения фосфора. Метод определения рН.	Прямая по- тенциометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Красители кубовые	Красители ку- бовые	ГОСТ 27403-87	Красители кубовые. Методы определения температуры замерзания, устойчивости к центрифугованию, и показателя активности водородных ионов (рН). (4. Метод определения концентрации водородных ионов.).		ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Углерод технический	Углерод техни- ческий	FOCT 25699.6-90	Углерод технический для производства резины. Методы определения рН водной суспензии.	Прямая по- тенциометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Концентрат баритовый	рН	ГОСТ 30240.7-95	Концентрат баритовый. Метод определения рН водной вытяжки.	Прямая по- тенциометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Продукты химиче- ские органические	Кислотность / Щелочность	FOCT 28351-89	Продукты химические органические. Методы определения кислотности и щелочности.	Титрование	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5

7. АНАЛИЗ СЫРЬЯ И МАТЕРИАЛОВ

1	2	3	4	5	6
Шкурки меховые и овчина	рН	ГОСТ 22829-77	Шкурки меховые и овчина шубная выделанные. Метод определения рН водной вытяжки.	Прямая по- тенциометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Кожа	рН	FOCT 938.8-69	Кожа. Метод определения величины рН хлоркалиевой вытяжки.	Прямая по- тенциометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
	рН	FOCT 26180-84	Корма. Методы определения аммиачного азота и активной кислотности (рН). (3. метод определения активной кислотности).	Прямая по- тенциометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Корма	Na+ (NaCl)	ГОСТ 13496.1-98	Корма, комбикорма, комбикормовое сырье. Методы определения натрия и хлорида натрия.	Метод доба- вок	ЭЛИС-112Na ЭСр-10103/3,5
	NO ₃ -	ГОСТ 13496.19-93	Корма, комбикорма, комбикормовое сырье. Методы определения содержания нитратов и нитритов.	Прямая по- тенциометрия	ЭЛИС-121NO3 ЭСр-10103/3,5
Фосфаты	рН	FOCT 24596.5-81	Фосфаты кормовые. Метод определения рН раствора или суспензии.	Прямая по- тенциометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
кормовые	F ⁻	ΓΟCT 24596.7-81	Фосфаты кормовые. Метод определения фтора (4. ионометрический метод определения фтора).	Прямая по- тенциометрия	ЭЛИС-131F ЭСр-10103/3,5

ГРБА2.840.009 ФО

1	2	3	4	5	6
Удобрения органические	рН	ГОСТ 27979-88	Удобрения органические. Метод определения рН.	Прямая по- тенциометрия	ЭСК-10303/7 или ЭС-10303/7 ЭСр-10103/3,5
Целлюлоза, бумага, картон	рН	ГОСТ 12523-77	Целлюлоза, бумага, картон. Метод определения величины рН водной вытяжки.	Прямая по- тенциометрия	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
Продукты лесотехнические	Кислотное число	ГОСТ 17823.3-80	Продукты лесотехнические. Метод определения кислотного числа потенциометрическим титрованием.	Титрование	ЭСК-10603/7 или ЭС-10603/7 ЭСр-10103/3,5
	Свободные смо- ляные кислоты	ГОСТ Р 50378-92	Продукты лесотехнические. Метод определения свободных смоляных кислот.	Титрование	ЭСК-10303/7 или ЭС-10303/7 ЭСр-10103/3,5

8. АНАЛИЗ ГОТОВОЙ ПРОДУКЦИИ

1	2	3	4	5	6
Средства гигиены	F ⁻	ГОСТ Р 51577-2000	Средства гигиены полости рта жидкие. Общие технические условия. (6.8 Определение массовой доли фторидов).	Прямая по- тенциометрия	ЭЛИС-131F ЭСр-10103/3,5
Пасты зубные	F ⁻	ГОСТ 7983-99	Пасты зубные. Общие технические условия. (6.8 Определение массовой доли фторидов).	Прямая по- тенциометрия	ЭЛИС-131F ЭСр-10103/3,5
Косметика	рН	ГОСТ 29188.2-91	Изделия косметические. Метод определения водородного показателя (рН).	Прямая по- тенциометрия	ЭСК-10303/7 или ЭС-10303/7 ЭСр-10103/3,5

9. ЗДРАВООХРАНЕНИЕ

1	2	3	4	5	6
Моча	F ⁻	МУК 4.1.773-99	Количественное определение ионов фтора в моче с использованием ионселективного электрода.	Прямая по- тенциометрия	ЭЛИС-131F ЭСр-10103/3,5

10. АНАЛИЗ ВОЗДУХА

1	2	3	4	5	6
Воздух рабочей зоны	три (оксиметил) аминометан гидрохлорид	МУК 4.1.0.396-96	Методы контроля Химические факторы. Измерение концентраций три (оксиметил) аминометана гидрохлорида методом потенциометрического титрования в воздухе рабочей зоны.	Титрование	Ag – электрод ЭСр-10101/3,5 (1M KNO₃)
Воздух (атмосферный)	Аминофени- луксусная кис- лота	МУК 4.1.593-96	Методы контроля Химические факторы. Методические указания по определению аминофенилуксусной кислоты в атмосферном воздухе потенциометрическим титрованием.	Титрование	ЭС-10603/7 ЭСр-10103/3,5
Продукты горения	рН	ГОСТ Р МЭК 60754-2-99	Испытание материалов конструкции кабелей при горении. Определение степени кислотности выделяемых газов рН и удельной проводимости.	Прямая по- тенциометрия	ЭСК-10303/7 или ЭС-10303/7 ЭСр-10103/3,5
Воздух	HF	МУК 5930-91	Методические указания по ионометрическому измерению концентрации фтористого водорода и солей фтористоводородной кислоты в воздухе.	Прямая по- тенциометрия	ЭЛИС-131F ЭСр-10103/3,5
Воздух	HCI	МУК 5932-91	Методические указания по ионометрическому измерению концентрации хлористого водорода в воздухе рабочей зоны.	Прямая по- тенциометрия	ЭЛИС-131СI ЭСр-10101/3,5 (1M KNO ₃)

Лист регистрации изменений

	Номера листов (страниц)			ц)			Вусляций Мо		
Изм	изме- ненных	заме- ненных	НОВЫХ	анну- лиро- ван- ных	Всего листов в документе	№ доку- мента	Входящий № сопроводи- тельного доку- мента и дата	Под- пись	Дата
1		все			29	ГРБА			19.05.06
2		все			33	0100 ГРБА 0103			25.05.07
3		все			34	ГРБА 0114			03.02.10